Aitrtech
Published

The Limits Of Compression Ratio

Extrusion Know How

Don't rely just on this value during the screw design process.

Share

You have probably heard the terms 2:1, 3:1, and so on in describing single screws. These numbers refer to the compression ratio (C/R) of the screw, which is the ratio of the feed depth to the metering depth. Most people use C/R as a method to select the proper feed depth of the screw, but it significantly impacts the melting rate as well.

While C/R should not be overlooked, there are a lot of other parameters to consider when designing the optimum feed and melting sections of a screw. The C/R does not tell you the channel depth or section length, just the ratio between them. Would you expect a screw with feed and metering depths of 0.900 in. and 0.300 in., respectively, to perform the same as one of the same size with depths of 0.450 in. and 0.150 in.? Or would you expect a screw with five feed flights to perform the same as one with 10 flights at the same depth? What if there is a pitch change between the feed section and metering section? These configurations can all have a 3:1 C/R, but for certain they will perform differently.

Feeding properties are hard to quantify and measure, so most screw designers necessarily use a largely empirical approach when making decisions. However, the best designers utilize a number of empirical relationships relating to the frictional characteristics of the individual polymer along with the particle characteristics of the individual application, such as bulk density, packing, and uniformity.

These vary by polymer, resin manufacturer, use of regrind, presence of additives or fillers, and feedthroat design. Screw designers will not rely on a single fixed ratio like C/R for each polymer, but one that varies to suit as many characteristics of the feed material and the feed-throat design as can be quantified.

The other aspect of C/R is that it affects the melting performance. That’s because C/R does not describe the rate of compression. For example, a 3:1 C/R will have a different compression rate if the compression section is five turns as opposed to 10. Different polymers—and even different grades of the same polymer—can require different rates of compression in order to optimize melting without plugging or breakup of the melting pattern.

The C/R alone does not provide that information. In addition, some polymers will experience a reduction in viscosity more than others under similar conditions of shear. This can require a different metering depth to control melt temperature, even though a target C/R has been met for the feed capacity. Consequently, the ideal feed and metering depth are seldom based simply on C/R.

Today many screws utilize a barrier section, which completely eliminates the need for any relationship between the feed depth and the metering depth. Since melting is controlled in the barrier section, the metering section can be designed to accommodate other aspects of the extrusion process, such as head pressure, melt temperature, and mixing, without affecting either the feed rate or the melting performance.

The use of “standard” C/Rs for certain polymers has resulted in many poorly designed screws. The shortcoming is usually in matching the melting rate to the polymer and output. A bad match can result in high screw wear, surging, poor melt quality, and poor mixing.

Airtech
Acquire
World According To
Plastics Size Reduction
Register Now!
chemical foaming agents rotational molding video
Resinworks with Optimizer
See How Much You Can Save Ulta Low Energy Dryer

Related Content

The Fundamentals of Polyethylene – Part 2: Density and Molecular Weight

PE properties can be adjusted either by changing the molecular weight or by altering the density. While this increases the possible combinations of properties, it also requires that the specification for the material be precise.

Read More
Extrusion

The Importance of Barrel Heat and Melt Temperature

Barrel temperature may impact melting in the case of very small extruders running very slowly. Otherwise, melting is mainly the result of shear heating of the polymer.

Read More
best practices

The Effects of Stress on Polymers

Previously we have discussed the effects of temperature and time on the long-term behavior of polymers. Now let's take a look at stress.

Read More
Commodity Resins

Improving Twin-Screw Compounding of Reinforced Polyolefins

Compounders face a number of processing challenges when incorporating a high loading of low-bulk-density mineral filler into polyolefins. Here are some possible solutions.

Read More

Read Next

NPE

Beyond Prototypes: 8 Ways the Plastics Industry Is Using 3D Printing

Plastics processors are finding applications for 3D printing around the plant and across the supply chain. Here are 8 examples to look for at NPE2024.

Read More
sustainability

For PLASTICS' CEO Seaholm, NPE to Shine Light on Sustainability Successes

With advocacy, communication and sustainability as three main pillars, Seaholm leads a trade association to NPE that ‘is more active today than we have ever been.’    

Read More
Airtech International Inc.