Stop Wasting. Start Shredding.
Published

Study Deems PHA as Biodegradable Alternative to Single-Use Plastics Like Straws

Applications for polyhydroxyalkanoate (PHA) can include additives, aqueous coatings, fibers, filaments, films, hot-melt adhesives and injection-molded articles.

Share

A pioneer of renewable and sustainable biopolymers for over a decade, with a focus on creating plastic products that are biodegradable and compostable, has gotten a ‘green light’ for its polyhydroxyalkanoate (PHA) material from University of Georgia (UGA) researchers and members of the UGA New Materials Institute.

PHA from Danimer Scientific has been recognized as an eco-friendly alternative to petrochemical plastics, according the study, which was recently published in Environmental Science & Technology. Researchers found that PHA effectively biodegrades in aerobic or anaerobic environments, such as a landfill, waste treatment facility or the ocean.

Danimer’s PHA technology can be found in a broad array of end-use plastic products. Applications for its PHA biopolymers include additives, aqueous coatings, fibers, filaments, films, hot-melt adhesives and injection-molded articles. The company now hold 125 patents in nearly 20 countries for a range of manufacturing processes and biopolymer formulations.

Said Danimer chief marketing officer Scott Tuten, “The results of this study indicate that PHA is a dependable and biodegradable plastic for food packaging and other consumer applications. Many single-use products, such as straws, are under scrutiny or even banned because of their environmental impact at the end of their lifecycle. Our team remains dedicated to helping companies find the quality, sustainable materials that fit their needs. This issue quite literally affects the entire world, so we were grateful for the opportunity to supply UGA with samples of PHA to explore what happens to the material in different environments.”

To determine how PHA biodegrades in a proper waste management scenario, researchers measured the gaseous carbon loss of PHA samples placed in anaerobic sludge after 40 – 60 days of incubation and compared the levels to those of cellulose powder in the same setting. The anaerobic degradation of PHA was not significantly different from that of the cellulose powder. In addition, the methane yields of PHA were found to be similar to food waste, which suggests the material could be effectively processed alongside common organic waste in a landfill.

Said Shunli Wang, Ph.D., postdoctoral research associate in the College of Engineering at UGA, “As governments and businesses consider alternatives to traditional plastics for everything from straws to food packaging, it is important to have a thorough understanding of the impact that different materials will have on various environments. Our study is among the first to comprehensively examine PHA, and results show that it has a relatively fast anaerobic biodegradation rate.”

Researchers also observed the gaseous carbon loss of PHA in seawater, simulating a situation when plastic waste is deposited in an ocean. The study confirmed that if a solid form of PHA were to end up in such an environment it would begin to biodegrade over the course of six months. Polypropylene pellets, a traditional plastic used as the negative control in the experiment, remained intact and unchanged during the same time period.

The final component of the study investigated the microbial diversity of both experiments to identify the bacteria present when PHA degrades. In anaerobic sludge conditions, Cloacamonales and Thermotogales were the dominant bacteria. In aerobic seawater conditions, Gemmatales and Phycisphaerales were the most enriched forms of bacteria. Researchers concluded that future studies would have to include expanded microbial analysis of PHA degradation, which will ultimately help guide the design of more efficient waste management systems.

Read the full paper summarizing the study on the Environmental Science & Technology website.

Glycon's DM2: The High Performance Feedscrew
Shibaura Machine Industrial IoT machiNetCloud
Resinworks with Optimizer
TD-Series Desiccant Dryers
Repair and Rectify
chemical foaming agents for molding and extrusion
Guill - World Leader in Extrusion Tooling
Best of the Best
Stop Wasting. Start Shredding
We ❤ Powders
large tonnage injection molding productivity
Elevate your PET sorting

Related Content

Postconsumer

Foam-Core Multilayer Blow Molding: How It’s Done

Learn here how to take advantage of new lightweighting and recycle utilization opportunities in consumer packaging, thanks to a collaboration of leaders in microcellular foaming and multilayer head design.

Read More
Commodity Resins

‘Monomaterial’ Trend in Packaging and Beyond Will Only Thrive

In terms of sustainability measures, monomaterial structures are already making good headway and will evolve even further.

Read More
sustainability

How to Extrusion Blow Mold PHA/PLA Blends

You need to pay attention to the inherent characteristics of biopolymers PHA/PLA materials when setting process parameters to realize better and more consistent outcomes.    

Read More

Medical Molder, Moldmaker Embraces Continuous Improvement

True to the adjective in its name, Dynamic Group has been characterized by constant change, activity and progress over its nearly five decades as a medical molder and moldmaker.

Read More

Read Next

NPE

Making the Circular Economy a Reality

Driven by brand owner demands and new worldwide legislation, the entire supply chain is working toward the shift to circularity, with some evidence the circular economy has already begun.

Read More
Automation

People 4.0 – How to Get Buy-In from Your Staff for Industry 4.0 Systems

Implementing a production monitoring system as the foundation of a ‘smart factory’ is about integrating people with new technology as much as it is about integrating machines and computers. Here are tips from a company that has gone through the process.

Read More
NPE

Beyond Prototypes: 8 Ways the Plastics Industry Is Using 3D Printing

Plastics processors are finding applications for 3D printing around the plant and across the supply chain. Here are 8 examples to look for at NPE2024.

Read More
New 2024 Twin Screw Report